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1. INTRODUCTION

With the progress of the computer and com-
putational techniques, we have often experienced
that the return to the first principles of physics
enables a model to cope more easily with the
complexity of the atmosphere. Ooyama (1990)
propose a “primitive "form of moist thermody-
namics. Instead of using pressure as a prognostic
variable, Ooyama’s model use the conservation
of the entropy demsity, the momentum density
and the total moisture density as predicted vari-
ables. When the hydrostatic approximation is
made, the only change is how the vertical mo-
tion is computed (i.e., diagnostic instead of prog-
nostic). Since the hydrostatic model has the
physics of a GCM, we can run the two mod-
els in parallel and compare the “exact” physical
results of the nonhydrostatic model with the var-
ious parameterizations formulated in the hydro-
static model. The advantage of the Qoyama’s
proposal is to give both accurate and consis-
tent approaches to the reversible moist thermo-
dynamic in a detailed, fine resolution, nonhy-
drostatic cloud model and a coarse resolution,
hydrostatic {GCM-like) model. The only differ-
ences between the two models are spatial reso-
lution and the way vertical motion is computed.
The moist thermodynamics is identical. This al-
lows us to analyze in detail what physics is lost
{and hence needs to be parameterized) as model
resolution coarsens and nonhydrostatic dynam-
ics is replaced by hydrostatic dynamics.

The modeling studies reported here make
use of a Fourier-Chebyshev spectral discretiza-
tion of a nonhydrostatic model based on the

“primitive” form of moist thermodynamics (Ooyama,

1990). Our goal is to employ a very accurate dis-
cretization on the model that has least assump-
tions in the moisture physics. We will use the
model to study the interaction of radiative, con-
vective and microphysi-al effects. We have con-
structed the convection model in two-dimension.
The governing equations are presented in section
9. Section 3 gives the solution method. Numer-
ical results are covered in section 4. Section 5
contains the concluding remarks.

2. GOVERNING EQUATIONS

Qur modeling effort involves the Fourier-
Chebyshev spectral discretization similar to that
in Kuo and Schubert (1988) and the moist ther-
modynamnics of the “primitive” form in Ooyama
(1990}, We believe a sound basis for moist ther-
modynamics and a accurate treatment of dis-
cretization are important for the improvment of
cloud modeling.

The “primitive”- form of moist thermody-
namics makes model predictions strictly in terms
of conservative properties, in particular the den-
sity of dry air £, density of total airborne mois-
ture 7, entropy density o, the momentum den-
sities U = pu, V = pu, W = pw, where p =
£ + . The predicted values of €, 7,0 at each
spatial point are then input into a thermody-
naric diagnosis, which outputs the temperature
T and pressure p. Since, at any spatial point,
p = P(&,n,0), we have Vp = P:VE{+ P,Vn +
P,Vo. The P-coefficients are known functions
of (£,7,0) so that this formula for Vp could now
be used for the pressure gradient force in the mo-
mentum equations. However, Ooyama discussed
how this can cause Gibbs’ phenomena near cloud
edges. As a solution he proposes weighted aver-
ages of the P-coefficients for saturated and un-
saturated conditions. The overlap of the weight-
ing coeflicients is adjusted to the model spatial
resolution.

We consider the two-dimensional (z, z) case
described below. Here we have neglected fric-
tional effects, but have included precipitation
{or drizzle) effects in €}, and radiative effects

in 5. The proguostic equations for the conser-
vative variables are
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The above constitute eight equations for the five
prognostic variables £, n, o, U, W, and the four
diagnostic variables p, u, w and p. The system Is
closed by the thermodynamic diagnosis, the in-
put of which is £, 1, o, and the output of which is
temperature, pressure and the partition of 5 into
its vapor and condensate parts. This requires
writing two formulas (depending on whether the
total airborne moisture # is entirely in the vapor
phase or is partially condensed) for the entropy
o(&,n,T), iteratively solving for two tempera-
tures (7 and Ty) and then using

T = max{11,T3)
If Ty > Ty (unsaturated) p, = nR,T,

T =1, 7. =0
If 7y >Ty (saturated) p, = E(T7),
e =nT), e =0T
pe =ERT,  p=patpo

Here 7, and 7. are the densities of vapor and
condensate respectively, p, and p, the partial
pressures of dry air and water vapor respectively,
E(T) the saturation vapor pressure and 7. the
mass density of saturated vapor.

Some points of the Qoyama’s proposal worth|
noting are as follows.

1. The temperature and pressure are diag-
nostically determined from thermodynamics.

2. There is no need to predict water vapor

and condensate separately; rather, they are di-
agnostically separated from the predicted total
airhorne water.

3. There is a modular separation of dy-
namics and thermodynamics; the link between
dynamics and thermodynamics is through the
pressure gradient force.

4. The discontinuity in thermodynamics
due to phase change can be modified to a “grad-
ual saturation” in order to make the moist ther-
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modynamics match the spatial resolution of the
model.

5. The ice phase can be handled by a hy-
pothetical single phase condensate that behaves
like liquid at warm temperatures, like ice at cold
temperatures, with a gradual transition at inter-
mediate temperatures.

6. When the hydrostatic approximation is
made, the only change is how the vertical motion
is computed, i.e., equation (5) is replaced by a
simple diagnostic equation.

3. SOLUTION METHODS

The simulation of moist convections place
great demands on spatial discretization schemes
used in simulation models. In the present work
we have used a scheme which is spectral in both
horizontal directions. We shall solve the above
system of equation on the domain 0 < z <
L,0 < z < H, with the assumption that all vari-
ables are periodicin z and W =0on 2 =0, H.
In the z direction, Fourier basis functions are
used so that the periodicity is built into each
basis function. In the z direction, Chebyshev
polynomial basis functions are used; the top and
bottom boundary conditions are not satisfied by
each basis function, but rather by the series as a
whole. In the following we discuss the spectral
method for solving the above system.

The dependent variables (e.g. &) are ap-
proximated by the series expansions

Z Zﬁmn(t)'r ()etmime /L

m=—M n=0
(9}

where the T,{z') are the Chebyshev polynomi-
als defined on the interval —1 < 2z’ < 1 by
T.(z') = cos(ng) with 2’ = 2z/H — 1 = cos¢.
Defining the Fourier-Chebyshev inner product of
two functions f(z,z) and g(=, 2) as
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where the star denotes complex conjugate. The
spectral coefficient &, (%) is given by
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with ¢, = {? } Equation (10} is the
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transformation from physical space to Fourier-
Chebyshev spectral space and (11) is the trans-
formation back.

With the nonlinear terms defined by,
A=¢uy B=%w, (12)

and to be computed by the transform method,
the tau equation for £ is

Lon L AW +BE =0, (@13)
where A& is the spectral coefficients of 0A/0x

and BIGY is the spectral coefficients of 8B/dz.
To eliminate aliasing error in the quadratic non-
linear terms, 3M points in x and 3N/2 points in
z are needed in the physical domain.

The relation between 131(”1“?) and A,,, (the
spectral coefficient of A) is

g =i (B sy

while the relation between 353;}) and Bon {the
spectral coefficient of B) is

N
N 4 N
B = oo Z P8y (15)
s p=n-+l
p+n odd

Although the spectral evaluation of z derivatives
by {15) looks at first sight more difficult than
the spectral evaluation of x derivatives by (14),
such is not the case. Equation (13) yields the
(backward) recurrence formula

cn_iB,(.E 71;,) I—Bfﬁ,’,ll)ﬂ = %nﬁ"m,n (n=12,--

(16)

with the starting values B(O 1)+ = B(0 V=0

For fixed m, the use of (16) allows the N values
of BYGY to be computed in O(N) operations.

We have used the fourth-order Runge-Kutta
scheme in the integration of (13). The n =
N —1, N modes of W are solved from the bound-
ary conditions (W = 0). Details of the dis-
cretization can be found in Kuo and Schubert
(1988).

4. NUMERICAL RESULTS

We have used L = H = 2500m, M = 16,
N = 32 and At = 0.075s in our calculation. In
addition, the Lanczos filter has applied to the
tendency of the spectral variables. We present
a dry hydrostatic adjustment experiment in our

paper.

The basic states used are 7 =0,

T(z) = 293.15 — g/ Ryz,
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Figuwre 1 The U, W, ¢’ and &' (dry air density)
in physical domain at time 0.3 sec-
ond for the calculation with AT =
2.5K. The peak momentum is 0.756
kgm~2?s~! and the contour interval
for o is 1Jm™3K~!. The contour
interval for £ is 3 x 10~3kgm 2 and

the unit is 10~%kgm 3.
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and -
£(z) = 1.1478kgm™>.

The basic states satisfy the hydrostatic balance.
Superimpose on the basic state is a 77 anomaly
defined as

, z— 1250 4 z— 1250,
7" = ATeap(~(S o522 ean(~ (25200,
We have also set the £’ equal to zero in our initial
condition. Thus only the p’ and ¢’ anomaly exist
along with the T anomaly. Since £ = 0, the
anomaly (bubble) has no buoyancy and will not
rise. Moreover, hydrostatic balance is violated
with & = 0.

Figure 1 shows the U, W, ¢ and £’ in physi-
cal domain at time 0.3s for the calculation with
AT = 2.5K. Figures 2 and 3 are similar to Fig-
ure 1 except at time 1.8s and 30s respectively.
Figure 3 reveals the motion and density fields as-
sociated with a rising bubble. This rising bub-

“ble (now £ < 0 ) can be viewed as the result
of the hydrostatic adjustment by the acoustic
waves. In contrast, Figures 1 and 2 indicate the

~motions and density flelds associated with the
acoustic wave transient.

To see how fast the acoustic wave can make
the hydrostatic adjustment, we have plot the
time series at the center of the domain for the
variables of divergence, T’, £ and p' in Figure
4. It takes about 3 to 4 seconds for these vari-
ables to reach a steady state. Figure 5 is similar
to Figure 4 except for AT = 7.0 case. Inter-
estingly, the time series in both cases are very
similar. This indicates the atmosphere reaches
the “anelastic balance” ( 9p'/8t = 0) or converts
a zero &' to a finite value of £ in 3 to 4 seconds
regardless of the size of AT. Discussions about
the one-dimensional acoustic adjustment with a
isothermal basic state can be found in Bannon
(1995).

5. CONCLUDING REMARKS

We have constructed a new spectral convec-
tion model that employ the least assumptions
in the moist physics. This reformulated model
will be used to study the interaction of radiative,
convective, and drizzle effects. We are currently
improving the efficiency of time discretization.
Preliminary results from the model will be given
in the conference.
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Figure 2 Similar to Figure 1 except at time
1.8 second. The peak momentum is
0.61 kgm~2s~! and the contour in-
terval for o is 1Jm 3 K~!. The con-
tour interval for £ is 3 x 107 *kgm 3

and the unit is 10~ %kgm=3.
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Figure 5 Similar to Figure 4 except for the
experiment with AT = 7.5K.
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